I read a few things this week that might get you thinking about where we might be going as a race.
I read the classic sci-fi novel ‘The Time Machine’ by H.G. Wells in which a scientist builds a time machine and travels 800,000 years into the future. Given the time scale, the Time Traveller naturally expects a world very different from our own. Like most people, he expects a highly advanced society with unimaginable technologies. Wells, on the other hand, wrote a very different future.
He describes how the human race has split into two species, neither of which are anything to look forward to. One species, the Eloi, essentially pushed the other, the Morlocks, underground to work for them. Over the generations, in the absence of any need for physical exertion, as diseases are eliminated and with the Morlocks providing for them, the Eloi gradually lose the need for strong bodies and intelligence in everyday life. As a result, they evolve to become almost childlike in both appearance and mentality. They have become victims of their own success by eliminating the problems that keep their minds and bodies active.
Then I read an article by Stephen Baxter in the BBC’s Focus science magazine (Apr, 2013) in which he discusses the possibility of human subspecies evolving. He mentions a few different ways in which this might happen such as colonies on different planets or genetic engineering. Regardless of how it happens, the most likely result of developing two human subspecies is war.
It is hoped that future humans will have the intelligence to avoid conflict but, looking at the state of the world today, this is debatable. Baxter references ‘On The Origin Of Species’ as saying that similar species, i.e. from the same genus (Homo for us humans), are in fact more like to conflict with each other as they are more likely to compete for the same resources. This is one of the most common explanations given for contributing to the demise of the Neanderthals.
Even today, this strikes a chord as conflict between human races and nationalities are often over competition for resources. For example, immigrants are often given a hard time for ‘taking our jobs’ or ‘our women’, sometimes leading to conflict.
Given the fate of the Eloi in ‘The Time Machine’, is it wise that we can have food delivered to our door, use machines to carry us on long journeys (and short ones) or that we depend so heavily on electronics to do much of our thinking for us such as remembering important dates and relying on them to remind us of them?
By using technology to make our lives easier, are we slowly making ourselves dumber and weaker as a race?
And if there is ever another species to compete with, will we have the capacity to outsmart them? Or will we go the way of the Neanderthals – into the history books? Or the way of the Morlocks – into slavery?
For many Star Trek fans, one of the main attractions of the show is the futuristic technology. For some it’s the battle scenes where we watch bursts from the phaser banks and hear “Shields down to 60%” while others are excited by the concept of exploring the galaxy for the sake of scientific research, seeking out new life and colonising new planets.
One Star Trek enthusiast (who admittedly is a genuine engineer) has started a campaign to build a full scale replica of the Enterprise over the next 20 years which can travel to Mars in under 90 days using Ion Propulsion Engines. The Build The Enterprise campaign has been turning heads of Trekkies (or Trekkers for the die-hards) around the world.
Obviously, the plan has received mixed reviews. There has been much admiration of the boldness and detail of the plan but equally there has been criticism, particularly at the cost – $40 billion per year for 20 years.
Anyway, the Enterprise is a 24th century ship. Even if we did have the money to build it, we don’t have the technology to kit it out. Or do we…
A lot of the technology we use in our everyday lives today featured prominently in the Star Trek arsenal of high tech gadgets. For example, the iPad is credited with being a revolutionary new technology developed by Steve Jobs. Please, Jean Luc was rocking that shit years ago.
Surprisingly, some of the technology, particularly from the original series, seems somewhat archaic compared to our devices. Look at Kirk’s communicator, it looks more like a phone that’s ten years out of date by todays standards than a 24th century technology. Especially when you consider that our phones are now looking more like tricorders, with all the tricks they can do. It was particularly surprising to see Spock show Captain Pike a paper printout in the episode ‘The Menagerie’. Although this can be forgiven considering it was a rehash of the pilot episode.
While we can pat ourselves on the back for surpassing the series in these respects, they won’t be much use in getting an Enterprise through space. For the full experience you need warp drive, tractor beams, phasers, transporters, shields, replicators, etc. You may be surprised to learn that we have already taken the first steps to these technologies too. Some of the most significant developments will leave you very impressed.
Replicators
These seemed like one of the most fictitious and unlikely pieces of kit. All the other elements of the ship seemed possible given enough time and research, but to make stuff appear out of thin air always seemed to be truly science fiction. Surprisingly, of all the elements of the Enterprise, this is the one we have made the most progress with. Everyone with even a passing interest in technology has heard of 3D printers, which can literally print complex objects with moving parts. Have a look at this video to see how invaluable 3D printers will probably become in the coming years.
Still a long way to go until we can say “Tea. Earl Grey. Hot.” Another Picardism.
Tractor Beams
These beams were regularly used to apply forces to objects/ships to either pull them in or push them away. The Borg were fond of tractor beams to capture ships undamaged so that they could be harvested for new technologies. Scientists have made a small but significant breakthrough by using light beams to draw particles towards its source. Applications include possibly collecting particles from the tails of comets from a distance rather than risking entering the debris trail. This video explains it excellently (by the way, that youtube channel looks to be very good for science news based on first glance).
Warp Speed
Arguably the most important system on an interstellar spaceship, faster than light speed is essential to make manned journeys to planets outside our solar system viable. Consider Proxima Centauri, the nearest star to or own Sun. Even if we could travel at near the speed of light, it would take at least 4.24 years to reach the star and a similar time to make the return journey. Adding to this the time needed to carry out tasks such as research etc. It is clear these time scales dictate that a ship must carry vast stores of supplies and energy.
While travelling faster than the speed of light is well known to be impossible, scientists (including NASA) believe it may be possible to manipulate the fabric of space-time itself to ‘push’ the ship across the cosmos. By expanding the empty space behind the ship and contracting the space in front of it the ship slips through space-time at speeds high enough to shorten the journey to Proxima Centauri to just two weeks.
Note the bubble around the ship in this picture showing no change in the immediate vicinity, so the crew would not perceive anything unusual from their point of view. Unfortunately, the energy required to manipulate space-time like this is far too high but NASA actually have people working on how to make it a reality. Physicist Harold White has published work on this for them, exploring means of reducing the energy needed and proposing possible ship designs.
Phasers
The concept of firing energy beams has been the dominant choice of weapon by science fiction writers for some time now. The development of this technology is probably just a matter of time now. High power lasers already exist, in fact the Curiosity rover is currently blasting rocks on Mars by delivering a million watts of power for a few billionths of a second in order to analyse the glow from resulting plasma. See the before and after images of Curiosity’s wrath below. A high power beam like this would most likely be lethal if fired at a person considering the body doesn’t cope well with being turned into plasma.
Considering the level of knowledge on star trek technology already discovered today, it may not be unreasonable to say that humans will be leaving our solar system and exploring the cosmic neighbourhood by the end of this century. Gene Roddenberry may have been bang on with his predictions on the timetable of space exploration. After all, it’s only about 50 years until ‘First Contact’. Then, we boldly go where no man has gone before.